
Numbers
Numerical (Data) Types    To work properly with most FaceWare modules, a compiler must 
support numbers based on the IEEE or SANE format.    This requirement is met for all of the 
compilers that we directly support, but each language has its own way of naming these 
numerical types that does not always make clear the number of bytes used by each type.    
Moreover, different compilers supporting the same language may not even agree on type 
names!    The following table should help prevent any confusion.    The numbers 1 to 12 are 
sometimes passed to FaceWare modules to indicate the "data type" of variables.

Numerical Type              C                  Fortran              Pascal
1. 1-byte integer        char            integer*1          signedByte
2. 2-byte integer        short          integer*2          integer
3. 4-byte integer        long            integer*4          longint
4. 8-byte integer        comp            comp(AF,LF)      computational
5. 4-byte real              float          real*4                real
6. 8-byte real        double(WC)      real*8                double
                                short double(LC)
7. 10-byte real    extended(WC)    real*10(LF)        extended
 (w/o 68881/2)    long double(LC..if "Native FP" option on)
8. 12-byte real    extended(WC)    real*12(AF,LF)
 extended
    (w/ 68881/2)    long double(LC..if "Native FP" option on)
12.12-byte real long double(LC..if "Native FP" option off)

Array Types    Some modules require programmers to specify the data type of arrays.    This 
data type is a combination of one of the integers 1 to 12 from the above table, plus a "block 
type" given by the sign of this integer.    The block type refers to how the numbers in a two-
dimensional array are arranged in memory relative to "rows" and "columns" displayed or 
used by the module.    Positive block types (+1 to +12) indicate that the array consists of 
blocks of rows (R1C1, R1C2, R1C3... are contiguous), and negative block types (-1 to -12) 
indicate that the array consists of blocks of columns (R1C1, R2C1, R3C1... are contiguous in 
memory).
    Determining the proper block type (the sign of the data type) to pass to a module depends
on which index of the 2-dimensional array corresponds to rows vs. columns, and the 
language in use.    For example, given a real*8 Fortran array dimensioned as "myArray(10,5)"
and an equivalent C or Pascal array also dimensioned as "myArray[10,5]", the data type 
passed to a module could be either ±6:
    non-Fortran "myArray[10,5]" = 10 blocks of 5 numbers each:

    • use "+6" to denote 10 rows of 5 columns each
    
• use "-6" to denote 10 columns of 5 rows each
    vs. Fortran "myArray(10,5)" = 5 blocks of 10 numbers each:
    
• use "+6" to denote 5 rows of 10 columns each

    • use "-6" to denote 5 columns of 10 rows each

Type Conversion    Another number-related difference between compilers is the degree to 
which a compiler will or will not perform automatic type conversions.    Two generalizations 
can be made:
    1. A type conversion will usually be automatically made across an assignment statement 
between different types of integers or reals (or at least you are warned if the compiler won't 
make the conversion!).    For example, a 2-byte integer can be assigned to a 4-byte integer.
    2. Type conversions are generally not automatically made for the arguments passed in 



calls to subroutines, functions, and procedures.    Moreover, a compiler may not warn you of 
such a type mismatch, leading to some rather bizarre runtime errors.    The major exceptions
to this rule are the Pascal compilers which generally allow, for example, 2-byte integers to 
be passed to 4-byte integers and vice versa.
    To solve your type-mismatch problems, most compilers support the use of type-casts or 
functions that convert one type to another.


